Table 1. Predictions

Predict how each environmental condition—normal, windy, warm, and humid—might affect the rate of plant transpiration. Rank the conditions from the lowest rate to the highest rate, with number 1 being the lowest and number 4 being the highest.

Rank	Prediction	
1.		
2.		
3.		
4.		

Table 2. Transpiration Amounts with Different Environmental Conditions

Conditions	0 min	10 min	20 min	30 min
Normal	1mL	mL	mL	mL
Windy	1mL	mL	mL	mL
Warm	1mL	mL	mL	mL
Humid	1mL	mL	mL	mL

Table 3: Rate of Transpiration with Different Environmental Conditions

Calculate the rate of transpiration using the following formula:

Rate of transpiration = to	tal water loss	s mL/ surface	area m²/30 min
Rate of transpiration =	mL/	m²/3	30 min
Rate of transpiration =			

Conditions	Total water loss (mL)	Total surface area of leaves (cm²)	Total surface area of leaves (m²)	Rate of Transpiratio n (mL/m²)
Normal				
Windy				
Warm				
Humid				

Table 4. Transpiration (mL/m²) with Different Environmental Conditions

Click each environmental condition to graph the results.

Graph 1: Transpiration Rate for Four Conditions

transpiration?		
2. Conclude Write your results with your observations?	s in the chart. How do your predictions compare	
Rank Prediction 1.	Results	
2.		
3.		
4.		
3. Analyze For each environmincreased or decreased from	nental factor, explain why the rate of transpiration the control conditions.	
4. Evaluate Why is it importan	nt to calculate the surface area of the leaf?	
5. Quantify Review the graph transpiration decrease for hum	s that you created. By how much did the rate of nid conditions?	
6. Analyze Why do you think i potometer?	it is necessary to have an air-tight seal in the	
plays the most important role absorption of water by the roo	ay an important role in water transport. Which in the movement of water through a plant—the its or the evaporation of water from the leaves? In a simple experiment to test your hypothesis.	

When you are finished answering the questions, click **Done**.