Table 1. Predictions Predict how each environmental condition—normal, windy, warm, and humid—might affect the rate of plant transpiration. Rank the conditions from the lowest rate to the highest rate, with number 1 being the lowest and number 4 being the highest. | Rank | Prediction | | |------|------------|--| | 1. | | | | 2. | | | | 3. | | | | 4. | | | **Table 2. Transpiration Amounts with Different Environmental Conditions** | Conditions | 0 min | 10 min | 20 min | 30 min | |------------|-------|--------|--------|--------| | Normal | 1mL | mL | mL | mL | | Windy | 1mL | mL | mL | mL | | Warm | 1mL | mL | mL | mL | | Humid | 1mL | mL | mL | mL | | | | | | | ## **Table 3: Rate of Transpiration with Different Environmental Conditions** Calculate the rate of transpiration using the following formula: | Rate of transpiration = to | tal water loss | s mL/ surface | area m²/30 min | |------------------------------|----------------|---------------|----------------| | Rate of transpiration = | mL/ | m²/3 | 30 min | | Rate of transpiration = | | | | | Conditions | Total water
loss (mL) | Total surface
area of
leaves (cm²) | Total surface
area of
leaves (m²) | Rate of
Transpiratio
n (mL/m²) | |------------|--------------------------|--|---|--------------------------------------| | Normal | | | | | | Windy | | | | | | Warm | | | | | | Humid | | | | | ## Table 4. Transpiration (mL/m²) with Different Environmental Conditions Click each environmental condition to graph the results. **Graph 1: Transpiration Rate for Four Conditions** | transpiration? | | | |---|--|--| | | | | | 2. Conclude Write your results with your observations? | s in the chart. How do your predictions compare | | | Rank Prediction 1. | Results | | | 2. | | | | 3. | | | | 4. | | | | | | | | 3. Analyze For each environmincreased or decreased from | nental factor, explain why the rate of transpiration the control conditions. | | | | | | | 4. Evaluate Why is it importan | nt to calculate the surface area of the leaf? | | | 5. Quantify Review the graph
transpiration decrease for hum | s that you created. By how much did the rate of nid conditions? | | | 6. Analyze Why do you think i potometer? | it is necessary to have an air-tight seal in the | | | plays the most important role absorption of water by the roo | ay an important role in water transport. Which in the movement of water through a plant—the its or the evaporation of water from the leaves? In a simple experiment to test your hypothesis. | | | | | | | | | | When you are finished answering the questions, click **Done**.